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An exploration of ways to understand, assess and reason about uncertainty in climate 

science, with specific application to the IPCC assessment process.

Doubt is not a pleasant condition, but certainty is 
absurd.

—Voltaire

O	 ver the course of history, what seems unknowable  
	 and unimaginable to one generation becomes  
	 merely a technical challenge for a subsequent 

generation. The “endless frontier” of science (Bush 
1945) advances as scientists extend what is possible 
both in theory and practice. Doubt and uncertainty 
about our current understanding is inherent at the 
knowledge frontier. While extending the knowledge 
frontier often reduces uncertainty, it leads inevitably 
to greater uncertainty as unanticipated complexities 
are discovered. A scientist’s perspective of the knowl-
edge frontier is described by Feynman (1988): “When 

a scientist does not know the answer to a problem, he 
is ignorant. When he has a hunch as to what the result 
is, he is uncertain. And when he is pretty damn sure of 
what the result is going to be, he is still in some doubt. 
We have found it of paramount importance that in 
order to progress, we must recognize our ignorance 
and leave room for doubt. Scientific knowledge is a 
body of statements of varying degrees of certainty—
some most unsure, some nearly sure, but none abso-
lutely certain.”

How to understand and reason about uncertainty 
in climate science is a topic that is receiving increas-
ing attention in both the scientific and philosophi-
cal literature. Such inquiry is paramount because 
of the challenges to climate science associated with 
the science–policy interface and its socioeconomic 
importance, as ref lected by the Intergovernmen-
tal Panel for Climate Change (IPCC) assessment 
reports (all IPCC assessment reports are available 
online at www.ipcc.ch /publications_and_data 
/publications_and_data_reports.htm#1.)1

The “uncertainty monster” is a concept introduced 
by Van der Sluijs (2005) in an analysis of the different 
ways that the scientific community responds to uncer-
tainties that are difficult to tame. The “monster” is the 

Climate Science and the 
Uncertainty Monster

by J. A. Curry and P. J. Webster

1	 The first–fourth assessment reports (ARs) are referred to here 
as FAR, SAR, TAR, AR4, plus the forthcoming AR5. Unless 
otherwise indicated, citations in the text refer to Working 
Group I reports.
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confusion and ambiguity associated with knowledge 
versus ignorance, objectivity versus subjectivity, facts 
versus values, prediction versus speculation, and sci-
ence versus policy. The uncertainty monster gives rise 
to discomfort and fear, particularly with regard to our 
reactions to things or situations we cannot understand 
or control, including the presentiment of radical 
unknown dangers. An adaptation of Van der Sluijs’s 
strategies of coping with the uncertainty monster at 
the science–policy interface is described below.

•	 Monster hiding. Uncertainty hiding or the “never 
admit error” strategy can be motivated by a politi-
cal agenda or because of fear that uncertain science 
will be judged as poor science by the outside world. 
Apart from the ethical issues of monster hiding, 
the monster may be too big to hide and uncertainty 
hiding enrages the monster.

•	 Monster exorcism. The uncertainty monster exor-
cist focuses on reducing the uncertainty through 
advocating for more research. In the 1990s, a 
growing sense of the infeasibility of reducing 
uncertainties in global climate modeling emerged 
in response to the continued emergence of unfore-
seen complexities and sources of uncertainties. 
Van der Sluijs (2005, p. 88) states that “monster-
theory predicts that [reducing uncertainty] will 
prove to be vain in the long run: for each head of 
the uncertainty monster that science chops off, 
several new monster heads tend to pop up due to 
unforeseen complexities,” analogous to the Hydra 
beast of Greek mythology.

•	 Monster simplification. Monster simplifiers at-
tempt to transform the monster by subjectively 
quantifying and simplifying the assessment of 
uncertainty. Monster simplification is formalized 
in the IPCC TAR and AR4 by guidelines for char-
acterizing uncertainty in a consensus approach 
consisting of expert judgment in the context of a 
subjective Bayesian analysis (Moss and Schneider 
2000).

•	 Monster detection. The first type of uncertainty 
detective is the scientist who challenges existing 
theses and works to extend knowledge frontiers. 
The second type is the watchdog auditor, whose 
main concern is accountability, quality control, 
and transparency of the science. The third type 
is the merchant of doubt (Oreskes and Collins 
2010), who distorts and magnifies uncertainties as 
an excuse for inaction for financial or ideological 
reasons.

•	 Monster assimilation. Monster assimilation is 
about learning to live with the monster and giving 

uncertainty an explicit place in the contemplation 
and management of environmental risks. Assess-
ment and communication of uncertainty and igno-
rance, along with extended peer communities, are 
essential in monster assimilation. The challenge to 
monster assimilation is the ever-changing nature 
of the monster and the birth of new monsters.

This paper explores ways to understand, assess, 
and reason about uncertainty in climate science, with 
specific application to the IPCC assessment process. 
Section 2 describes the challenges of understanding 
and characterizing uncertainty in dynamical models 
of complex systems, including challenges to interpret-
ing the ensemble of simulations for the twenty-first-
century climate used in the IPCC assessment reports. 
Section 3 addresses some issues regarding reasoning 
about uncertainty and examines the treatment of un-
certainty by the IPCC Assessment Reports. Section 4 
addresses uncertainty in the detection and attribution 
of anthropogenic climate change. And finally, section 
5 introduces some ideas for monster taming strategies 
at the levels of institutions, individual scientists, and 
communities.

Uncertainty of climate models.
Synergy means behavior of whole systems unpredicted 
by the behavior of their parts.

—R. Buckminster Fuller

Climate model complexity arises from the nonlin-
earity of the equations’ high dimensionality (millions 
of degrees of freedom) and the linking of multiple 
subsystems. Computer simulations of the complex 
climate system can be used to represent aspects of 
climate that are extremely difficult to observe, experi-
ment with theories in a new way by enabling hitherto 
infeasible calculations, understand a system of equa-
tions that would otherwise be impenetrable, and 
explore the system to identify unexpected outcomes 
(e.g., Muller 2010).

Imperfect models.
The future ain’t what it used to be.

—Yogi Berra

Model imperfection is a general term that describes 
our limited ability to simulate climate and is catego-
rized here in terms of model inadequacy and model 
uncertainty. Model inadequacy reflects our limited 
understanding of the climate system, inadequacies of 
numerical solutions employed in computer models, 
and the fact that no model can be structurally identical 
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to the actual system (e.g., 
Stainforth et al. 2007). 
Model structural form 
is the conceptual mod-
eling of the physical 
system (e.g., dynamical 
equations, initial and 
boundary conditions), 
including the selection 
of subsystems to include 
(e.g., stratospheric chem-
istry, ice sheet dynamics). 
In addition to insuffi-
cient understanding of 
the system, uncertain-
ties in model structural 
form are introduced as 
a pragmatic compro-
mise between numerical 
stability and fidelity to 
the underlying theories, 
credibility of results, and 
available computational 
resources.

Model uncertainty 
is associated with un-
certainty in model pa-
rameters and subgrid 
parameterizations, and 
also with uncertainty 
in initial conditions. 
Uncertainties in param-
eter values include uncertain constants and other 
parameters that are largely contained in subgrid-scale 
parameterizations (e.g., boundary layer turbulence, 
cloud microphysics), and parameters involved in 
ad hoc modeling to compensate for the absence of 
neglected factors. Initial condition uncertainty arises 
in simulations of nonlinear and chaotic dynamical 
systems (e.g., Palmer et al. 2005). If the initial condi-
tions are not known exactly, then the forecast trajec-
tory will diverge from the actual trajectory, and it can-
not be assumed that small perturbations have small 
effects. As such, model uncertainty includes epistemic 
uncertainty in parameter values and both epistemic 
and ontic uncertainty in initial conditions.

Ensemble methods are a brute force approach 
to representing model parameter and initial condi-
tion uncertainty (for an overview, see Parker 2010). 
Rather than conducting a single simulation, multiple 
simulations are run that sample some combination 
of different initial conditions, model parameters 
and parameterizations, and model structural forms. 

While the ensemble method used in weather and 
climate predictions is inspired by Monte Carlo ap-
proaches, the application of a traditional Monte Carlo 
approach far outstrips computational capacity owing 
to the very large number of possible combinations 
required to fully represent climate model parameter 
and initial condition uncertainty. A high level of 
model complexity and high model resolution pre-
cludes large ensembles. Stochastic parameterization 
methods are being introduced (e.g., Palmer 2001) 
to characterize parameter and parameterization 
uncertainty, reducing the need to conduct ensemble 
simulations to explore parameter and parameteriza-
tion uncertainty.

Model outcome uncertainty, also referred to as 
prediction error, arises from the propagation of the 
aforementioned uncertainties through the model 
simulation and is evidenced by the simulated out-
comes. Model prediction error can be evaluated 
against known analytical solutions, comparisons 
with other simulations, and/or comparison with 

The nature of uncertainty is often expressed by the distinction between epistemic 
uncertainty and ontic uncertainty.
Epistemic uncertainty is associated with imperfections of knowledge, which may 

be reduced by further research and empirical investigation. Examples include limita-
tions of measurement devices and insufficient data. Epistemic uncertainties in models 
include missing or inadequately treated processes and errors in the specification of 
boundary conditions.

Ontic (often referred to as aleatory) uncertainty is associated with inherent variabil-
ity or randomness.

Natural internal variability of the climate system contributes to ontic uncertainty in 
the climate system. Ontic uncertainties are by definition irreducible.

Walker et al. (2003) provides a complete logical structure of the level of uncer-
tainty, characterized as a progression between deterministic understanding and total 
ignorance: statistical uncertainty, scenario uncertainty, and recognized ignorance.

Statistical uncertainty is the aspect of uncertainty that is described in statistical 
terms. An example of statistical uncertainty is measurement uncertainty, which can be 
due to sampling error or inaccuracy or imprecision in measurements.

Scenario uncertainty implies that it is not possible to formulate the probability of oc-
currence of one particular outcome. A scenario is a plausible but unverifiable descrip-
tion of how the system and/or its driving forces may develop over time. Scenarios may 
be regarded as a range of discrete possibilities with no a priori allocation of likelihood.

Recognized ignorance refers to fundamental uncertainty in the mechanisms being 
studied and a weak scientific basis for developing scenarios. Reducible ignorance may 
be resolved by conducting further research, whereas irreducible ignorance implies that 
research cannot improve knowledge.

An alternative taxonomy for levels of uncertainty is illustrated by this quote from 
U.S. Secretary of Defense Donald Rumsfeld (U.S. DOD 2011): “[A]s we know, there 
are known knowns; there are things we know we know. We also know there are 
known unknowns; that is to say we know there are some things we do not know. But 
there are also unknown unknowns—the ones we do not know we do not know. And 
if one looks throughout the history of our country and other free countries, it is the 
latter category that tend to be the difficult ones.”

Uncertainty lexicon
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observations. Reducing prediction error is a funda-
mental objective of model calibration. Calibration is 
necessary to address parameters that are unknown 
or inapplicable at the model resolution, and also in 
the linking of submodels. As the complexity, dimen-
sionality, and modularity of a model grow, model 
calibration becomes unavoidable and an increasingly 
important issue. Model calibration is accomplished by 
kludging (or tuning), which is “an inelegant, botched 
together piece of program; something functional but 
somehow messy and unsatisfying, a piece of program 
or machinery which works up to a point” (Lenhard 
and Winsberg 2011, p. 121). A kludge required in one 
model may not be required in another model that 
has greater structural adequacy or higher resolution. 
Continual ad hoc adjustment of the model (calibra-
tion) provides a means for the model to avoid being 
falsified; Occam’s razor presupposes that the model 
least dependent on continual ad hoc modification is 
to be preferred.

A serious challenge to improving complex non-
linear models is that model complexity and analytic 
impenetrability precludes the precise evaluation of 
the location of parameter(s) that are producing the 
prediction error (Lenhard and Winsberg 2010). For 
example, if a model is producing shortwave surface 
radiation fluxes that are substantially biased relative 
to observations, it is impossible to determine whether 
the error arises from the radiative transfer model, 
incoming solar radiation at the top of the atmosphere, 
concentrations of the gases that absorb shortwave ra-
diation, physical and chemical properties of the aero-
sols in the model, morphological and microphysical 
properties of the clouds, convective parameterization 
that influences the distribution of water vapor and 
clouds, and/or characterization of surface reflectiv-
ity. Whether a new parameterization module adds to 
or subtracts from the overall reliability of the model 
may have more to do with some entrenched features 
of model calibration than it does with that module’s 
fidelity to reality when considered in isolation.

Confidence and credibility.
All models are wrong, but some are useful.

—George E. P. Box

Confidence is a degree of certainty that a par-
ticular model is effective or useful. Confidence is 
inspired by the model’s relation to theory and physical 
understanding of the processes involved, sensitivity 
of the simulations to model structure, the nature of 
the ad hoc adjustments and calibration, extensive 
exploration of model uncertainty, consistency of the 

simulated responses, and the ability of the model and 
model components to simulate historical observa-
tions (e.g., Knutti 2008). User confidence in a forecast 
model system depends critically on the confirmation 
of forecasts, both using historical data (hindcasts, 
in-sample) and actual forecasts (out-of-sample ob-
servations). Parker (2009) argues that instances of fit 
between model output and observational data do not 
confirm the models themselves, but rather hypotheses 
about the adequacy of climate models for particular 
purposes. Hence, model validation strategies depend 
on the intended application of the model. However, 
there is no generally agreed upon protocol for the 
validation of climate models (e.g., Guillemot 2010).

User confidence in a forecast model depends 
critically on the confirmation of forecasts, both using 
historical data (hindcasts, in-sample) and out-of-
sample observations (forecasts). Confirmation with 
out-of-sample observations is possible for forecasts 
that have a short time horizon that can be compared 
with out-of-sample observations (e.g., weather fore-
casts). Unless the model can capture or bound a phe-
nomenon in hindcasts and previous forecasts, there 
is no expectation that the model can quantify the 
same phenomena in subsequent forecasts. Capturing 
the phenomena in hindcasts and previous forecasts 
does not in any way guarantee the ability of the 
model to capture the phenomena in the future, but it 
is a necessary condition (Smith 2002). If the distance 
of future simulations from the established range of 
model validity is small, then it reasonable to extend 
established confidence in the model to the perturbed 
future state. Extending such confidence requires that 
no crucial feedback mechanisms are missing from the 
model (Smith 2002).

Even for in-sample validation, there is no straight-
forward definition of model performance for complex 
nondeterministic models having millions of degrees of 
freedom (e.g., Guillemot 2010). Because the models are 
not deterministic, multiple simulations are needed to 
compare with observations, and the number of simula-
tions conducted by modeling centers are insufficient 
to establish a robust mean; hence, bounding box ap-
proaches (assessing whether the range of the ensembles 
bounds the observations; Judd et al. 2007) are arguably 
a better way to establish empirical adequacy. A further 
complication arises if datasets used in the model evalu-
ation process are the same as those used for calibration, 
which gives rise to circular reasoning (confirming the 
antecedent) in the evaluation process.

On the subject of confidence in climate models, 
Knutti (2008, p. 2654) summarizes, “So the best we 
can hope for is to demonstrate that the model does not 

1670 DECember 2011|



violate our theoretical understanding of the system 
and that it is consistent with the available data within 
the observational uncertainty.”

Simulations of the twenty-first-century climate.
There are many more ways to be wrong in a 106 dimen-
sional space than there are ways to be right.

—Leonard Smith

What kind of confidence can we have in the simu-
lations of scenarios for the twenty-first century? Since 
projections of future climate relate to a state of the 
system that is outside the range of model validity, it is 
therefore impossible to either calibrate the model for 
the forecast regime of interest or confirm the useful-
ness of the forecasting process. The problem is further 
exacerbated by the lifetime of an individual model 
version being substantially less than the prediction 
lead time (Smith 2002).

If the distance of future simulations from the 
established range of model validity is small, then it 
reasonable to extend established confidence in the 
model to the perturbed future state. In effect, such 
confidence requires that we assume that nothing hap-
pens that takes the model farther beyond its range of 
validity, and that no crucial feedback mechanisms are 
missing from the model (Smith 2002). Of particular 
relevance to simulations with increased greenhouse 
gases is the possibility that slow changes in the forcing 
may push the model beyond a threshold and induce 
a transition to a second equilibrium.

A key issue in assessing model adequacy for 
twenty-first-century climate simulations is the inclu-
sion of longer time-scale processes, such as the global 
carbon cycle and ice sheet dynamics. In addition to 
these known unknowns, there are other processes 
that we have some hints of but currently have no way 
of quantifying (e.g., methane release from thawing 
permafrost). Confidence established in the atmo-
spheric dynamical core as a result of the extensive 
cycles of evaluation and improvement of weather fore-
cast models is important, but other factors become 
significant in climate models that have less import 
in weather models, such as mass conservation and 
cloud and water vapor feedback processes.

Given the inadequacies of current climate models, 
how should we interpret the multimodel ensemble 
simulations of the twenty-first-century climate used 
in the IPCC assessment reports? This ensemble of 
opportunity is composed of models with generally 
similar structures but different parameter choices 
and calibration histories (for an overview, see Knutti 
et al. 2008; Hargreaves 2010). McWilliams (2007) and 

Parker (2010) argue that current climate model en-
sembles are not designed to sample representational 
uncertainty in a thorough or strategic way. Stainforth 
et al. (2007) argue that model inadequacy and an 
inadequate number of simulations in the ensemble 
preclude producing meaningful probability density 
functions (PDFs) from the frequency of model out-
comes of future climate. Nevertheless, as summarized 
by Parker (2010), it is becoming increasingly common 
for results from individual multimodel and perturbed 
physics simulations to be transformed into probabilis-
tic projections of future climate, using Bayesian and 
other techniques. Parker argues that the reliability 
of these probabilistic projections is unknown, and in 
many cases they lack robustness. Knutti et al. (2008) 
argues that the real challenge lies more in how to 
interpret the PDFs than in whether they should be 
constructed in the first place. Stainforth et al. (2007) 
warns against overinterpreting current model results 
since they could be contradicted by the next genera-
tion of models, undermining the credibility of the 
new generation of model simulations.

Stainforth et al. (2007) emphasize that models can 
provide useful insights without being able to provide 
probabilities, by providing a lower bound on the 
maximum range of uncertainty and a range of possi-
bilities to be considered. Kandlikar et al. (2005) argue 
that when sources of uncertainty are well understood, 
it can be appropriate to convey uncertainty via full 
PDFs; however, in other cases, it will be more appro-
priate to offer only a range in which one expects the 
value of a predictive variable to fall with some speci-
fied probability, or to indicate the expected sign of a 
change without assigning a magnitude. They argue 
that uncertainty should be expressed using the most 
precise means that can be justified, but that unjusti-
fied more precise means should not be used.

Uncertainty and the IPCC.
You are so convinced that you believe only what 
you believe that you believe, that you remain utterly 
blind to what you really believe without believing you 
believe it.

—Orson Scott Card, Shadow of the Hegemon

How to reason about uncertainties in the complex 
climate system and its computer simulations is not 
simple or obvious. Scientific debates involve contro-
versies over the value and importance of particular 
classes of evidence as well as disagreement about 
the appropriate logical framework for linking and 
assessing the evidence. The IPCC faces a daunting 
challenge with regard to characterizing and reasoning 
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about uncertainty, assessing the quality of evidence, 
linking the evidence into arguments, identifying 
areas of ignorance, and assessing confidence levels.

Characterizing uncertainty.
A long time ago a bunch of people reached a general 
consensus as to what’s real and what’s not and most of 
us have been going along with it ever since.

—Charles de Lint

Over the course of four assessment reports, the 
IPCC has given increasing attention to reporting 
uncertainties (e.g., Swart et al. 2009). The “guidance 
paper” by Moss and Schneider (2000) recommended 
steps for assessing uncertainty in the IPCC assess-
ment reports and a common vocabulary to express 
quantitative levels of confidence based on the amount 
of evidence (number of sources of information) and 
the degree of agreement (consensus) among experts 
(see sidebar for vocabulary).

The IPCC guidance for characterizing uncertainty 
for the AR4 (WMO 2005) describes three approaches for 
indicating confidence in a particular result and/or that 
the likelihood that a particular conclusion is correct:

1)	 A qualitative level-of-understanding scale de-
scribes the level of scientific understanding in 
terms of the amount of evidence available and 
the degree of agreement among experts. There 
can be limited, medium, or much evidence, and 
agreement can be low, medium, or high.

2)	 A quantitative confidence scale estimates the level 
of confidence for a scientific finding and ranges 
from “very high confidence” (9 in 10 chance) to 
“very low confidence” (less than 1 in 10 chance).

3)	 A quantitative likelihood scale represents “a 
probabilistic assessment of some well-defined 
outcome having occurred or occurring in the 
future.” The scale ranges from “virtually certain” 
(greater than 99% probability) to “exceptionally 
unlikely” (less than 1% probability).

Oppenheimer et al. (2007), Webster (2009), 
Petersen (2006), and Kandlikar et al. (2005) argue 
that future IPCC efforts need to be more thorough 
about describing sources and types of uncertainty, 
making the uncertainty analysis as transparent as 
possible. The InterAcademy Council (IAC; http://
reviewipcc.interacademycouncil.net/) reviewed the 
IPCC’s performance on characterizing uncertainty. 
In response to concerns raised in the review, the IAC 
made the following recommendations regarding the 
IPCC’s treatment of uncertainty:

•	 “Each Working Group should use the qualita-
tive level-of-understanding scale in its Summary 
for Policymakers and Technical Summary, as 
suggested in IPCC’s uncertainty guidance for 
the Fourth Assessment.” This is a key element of 
uncertainty monster detection.

•	 “Chapter Lead Authors should provide a traceable 
account of how they arrived at their ratings for 
level of scientific understanding and likelihood 
that an outcome will occur.” Failure to provide a 
traceable account is characteristic of uncertainty 
monster hiding.

•	 “Quantitative probabilities (as in the likelihood 
scale) should be used to describe the probabil-
ity of well-defined outcomes only when there is 
sufficient evidence. Authors should indicate the 
basis for assigning a probability to an outcome or 
event (e.g., based on measurement, expert judg-
ment, and/or model runs).” Using quantitative 
probabilities when there is insufficient evidence 
is uncertainty monster simplification.

The recommendations made by the IAC con-
cerning the IPCC’s characterization of uncertainty 
are steps in the right direction in terms of dealing 
with the uncertainty monster. Curry (2011a) further 
argued that a concerted effort by the IPCC is needed 
to identify better ways of framing the climate change 
problem, exploring and characterizing uncertainty, 
reasoning about uncertainty in the context of 
evidence-based logical hierarchies, and eliminating 
bias from the consensus building process itself.

Reasoning about uncertainty.
It is not so much that people hate uncertainty, but 
rather that they hate losing.

—Amos Tversky

The IPCC characterization of characterization is 
based upon a consensus building process that is an 
exercise in collective judgment in areas of uncertain 
knowledge. The general reasoning underlying the 
IPCC’s arguments for anthropogenic climate change 
combines a compilation of evidence with subjective 
Bayesian reasoning. This process is described by 
Oreskes (2007) as presenting a “consilience of evi-
dence” argument, which consists of independent lines 
of evidence that are explained by the same theoretical 
account.

Given the complexity of the climate problem, expert 
judgments about uncertainty and confidence levels 
are made by the IPCC on issues that are dominated 
by unquantifiable uncertainties. Curry (2011a) argues 
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that because of the complexity of the issues, individual 
experts use different mental models for evaluating the 
interconnected evidence. Biases can abound when 
reasoning and making judgments about such a com-
plex problem. Bias can occur as a result of excessive 
reliance on a particular piece of evidence, the presence 
of cognitive biases in heuristics, failure to account for 
indeterminacy and ignorance, and logical fallacies 
and errors, including circular reasoning. The IAC 
(2010, p. 41) states that “studies suggest that informal 
elicitation measures, especially those designed to reach 
consensus, lead to different assessments of probabili-
ties than formal measures. Informal procedures often 
result in probability distributions that place less weight 
in the tails of the distribution than formal elicitation 
methods, possibly understating the uncertainty associ-
ated with a given outcome.”

Oreskes (2007) draws an analogy for the con-
silience of evidence approach with what happens 
in a legal case. Continuing with the legal analogy, 
Johnston (2010) characterized the IPCC’s arguments 
as a legal brief, designed to persuade, in contrast to a 
legal memo that is intended to objectively assess both 
sides. Along the lines of a legal memo, Curry (2011a) 
argues that the consilience of evidence argument is 
not convincing unless it includes parallel evidence-
based analyses for competing hypotheses, and hence 
a critical element in uncertainty monster detection. 
Any evidence-based argument that is more inclined 
to admit one type of evidence or argument rather 
than another tends to be biased. Parallel evidence-
based analysis of competing hypotheses provides 
a framework whereby scientists with a plurality of 
viewpoints participate in an assessment. In a Bayesian 
analysis with multiple lines of evidence, it is conceiv-
able that there are multiple lines of evidence that pro-
duce a high confidence level for each of two opposing 
arguments, which is referred to as the ambiguity of 
competing certainties. If uncertainty and ignorance 
are acknowledged adequately, then the competing 
certainties disappear. Disagreement then becomes 
the basis for focusing research in a certain area, and 
so moves the science forward.

Uncertainty in the attribution 
of twentieth-century climate 
change. 
Give me four parameters, and I can fit an elephant. 
Give me five, and I can wiggle its trunk.

—John von Neumann

Arguably the most important conclusion of IPCC 
AR4 is the following statement: “Most of the observed 

increase in global average temperatures since the mid-
20th century is very likely due to the observed increase 
in anthropogenic greenhouse gas concentrations” 
(IPCC 2007, p. 10). This section raises issues regarding 
the uncertainties that enter into the attribution argu-
ment, ambiguities in the attribution statement and 
apparent circular reasoning, and lack of traceability 
of the “very likely” likelihood assessment.

IPCC’s detection and attribution argument.
What we observe is not nature itself, but nature 
exposed to our method of questioning.

—Werner Karl Heisenberg

The problem of attributing climate change is 
intimately connected with the detection of climate 
change. A change in the climate is “detected” if its 
likelihood of occurrence by chance due to internal 
variability alone is determined to be small. Knowledge 
of internal climate variability is needed for both de-
tection and attribution. Because the instrumental 
record is too short to give a well-constrained estimate 
of internal variability, internal climate variability is 
usually estimated from long control simulations from 
coupled climate models. The IPCC AR4 (Hegerl et al. 
2007, p. 668) formulates the problem of attribution to 
be: “In practice attribution of anthropogenic climate 
change is understood to mean demonstration that 
a detected change is ‘consistent with the estimated 
responses to the given combination of anthropogenic 
and natural forcing’ and ‘not consistent with alter-
native, physically plausible explanations of recent 
climate change that exclude important elements of 
the given combination of forcings’” (Mitchell et al. 
2001, p. 700).

Detection and attribution analyses use objective 
statistical tests to assess whether observations contain 
evidence of the expected responses to external forcing 
that is distinct natural internal variability. Expected 
responses, or “fingerprints,” are determined from 
climate models and physical understanding of the 
climate system. Formal Bayesian reasoning is used to 
some extent by the IPCC in making inferences about 
detection and attribution. The reasoning process used 
in assessing likelihood in the attribution statement 
is described by this statement from the AR4 (Hegerl 
et al. 2007, p. 669):

The approaches used in detection and attribution 
research described above cannot fully account for 
all uncertainties, and thus ultimately expert judg-
ment is required to give a calibrated assessment of 
whether a specific cause is responsible for a given 
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climate change. The assessment approach used in 
this chapter is to consider results from multiple 
studies using a variety of observational data sets, 
models, forcings and analysis techniques. The 
assessment based on these results typically takes 
into account the number of studies, the extent to 
which there is consensus among studies on the 
significance of detection results, the extent to which 
there is consensus on the consistency between the 
observed change and the change expected from 
forcing, the degree of consistency with other types 
of evidence, the extent to which known uncertain-
ties are accounted for in and between studies, and 
whether there might be other physically plausible 
explanations for the given climate change. Having 
determined a particular likelihood assessment, this 
was then further downweighted to take into account 
any remaining uncertainties, such as, for example, 
structural uncertainties or a limited exploration of 
possible forcing histories of uncertain forcings. The 
overall assessment also considers whether several 
independent lines of evidence strengthen a result.

The IPCC AR4 (Hegerl et al. 2007) describes two 
types of simulation methods that have been used in 
detection and attribution studies. The first method 
is a “forward calculation” that uses best estimates of 
external changes in the climate system (forcings) to 
simulate the response of the climate system using a 
climate model. These forward calculations are then 
directly compared to the observed changes in the 
climate system. The second method is an “inverse 
calculation,” whereby the magnitude of uncertain 
model parameters and applied forcing is varied to 
provide a best fit to the observational record. While 
the exact reasoning underlying the IPCC’s likelihood 
assessment is unclear, the important role of coupled 
climate models in the assessment is indicated by 
the fact that 12 of the 14 figures in sections 9.2–9.4 
in Hegerl et al. (2007) are based upon the results of 
climate model simulations.

Whereas all of the climate model simulations and 
various attribution studies agree that the warming 
observed since 1970 can only be reproduced using an-
thropogenic forcings, models and attribution analyses 
disagree on the relative importance of solar, volcanic, 
and aerosol forcing in the earlier part of the twentieth 
century (section 9.4.1 in Hegerl et al. 2007). The sub-
stantial warming during the period 1910–40 has been 
attributed by nearly all the modeling groups to some 
combination of increasing solar irradiance and a lack 
of major volcanic activity. The cooling and leveling 
off of average global temperatures during the 1950s 

and 1960s is attributed primarily to aerosols from 
fossil fuels and other sources, when the greenhouse 
warming was overwhelmed by aerosol cooling.

Sources of uncertainty.
Not only does God play dice, but sometimes he throws 
the dice where we can’t see them.

—Stephen Hawking

Attribution of observed climate change is affected 
by errors and uncertainties in the prescribed external 
forcing and in the model’s capability to simulate both 
the response to the forcing (sensitivity) and decadal-
scale natural internal variability. Uncertainties in 
the model and forcing are acknowledged by the AR4 
(Hegerl et al. 2007, p. 669): “Ideally, the assessment 
of model uncertainty should include uncertainties in 
model parameters (e.g., as explored by multi-model 
ensembles), and in the representation of physical 
processes in models (structural uncertainty). Such 
a complete assessment is not yet available, although 
model intercomparison studies (chapter 8) improve 
the understanding of these uncertainties. The effects 
of forcing uncertainties, which can be considerable for 
some forcing agents such as solar and aerosol forcing 
(section 9.2), also remain difficult to evaluate despite 
advances in research.”

The level of scientific understanding of radiative 
forcing is ranked by the AR4 (Table 2.11 in Forster 
et al. 2007) as high only for the long-lived greenhouse 
gases, but it is ranked as low for solar irradiance, 
aerosol effects, stratospheric water vapor from CH4, 
and jet contrails. Radiative forcing time series for 
the natural forcings (solar, volcanic aerosol) are 
reasonably well known for the past 25 years, with 
estimates farther back in time having increasingly 
large uncertainties.

Based upon new and more reliable solar recon-
structions, the AR4 (Forster et al. 2007, section 2.7.1.2) 
concluded that the increase in solar forcing during the 
period 1900–80 used in the AR3 reconstructions is 
questionable and that the direct radiative forcing due to 
an increase in solar irradiance is reduced substantially 
by the AR3. However, consideration of Table S9.1 in 
the Hegerl et al. (2007) shows that each climate model 
used outdated solar forcing (from the AR3) that was 
assessed to substantially overestimate the magnitude of 
the trend in solar forcing prior to 1980. The IPCC AR4 
(Hegerl et al. 2007, p. 679) states that “while the 11-year 
solar forcing cycle is well documented, lower-frequency 
variations in solar forcing are highly uncertain.” 
Furthermore, “large uncertainties associated with esti-
mates of past solar forcing (section 2.7.1) and omission 
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of some chemical and dynamical response mechanisms 
(Gray et al., 2005) make it difficult to reliably estimate 
the contribution of solar forcing to warming over the 
20th century.”

The greatest uncertainty in radiative forcing is 
associated with aerosols, particularly the aerosol 
indirect effect, whereby aerosols inf luence cloud 
radiative properties. Consideration of Fig. 2.20 of 
the AR4 (Forster et al. 2007) shows that, given the 
uncertainty in aerosol forcing, the magnitude of 
the aerosol forcing (which is negative, or cooling) 
could rival the forcing from long-lived greenhouse 
gases (positive, or warming). The twentieth-century 
aerosol forcing used in most of the AR4 model simu-
lations (Forster et al. 2007, section 9.2.1.2) relies on 
inverse calculations of aerosol optical properties to 
match climate model simulations with observations. 
The only constraint on the aerosol forcing used in 
the AR4 attribution studies is that the derived forcing 
should be within the bounds of forward calculations 
that determine aerosol mass from chemical trans-
port models, using satellite data as a constraint. The 
inverse method effectively makes aerosol forcing a 
tunable parameter (kludge) for the model, particu-
larly in the presatellite era. Further, key processes 
associated with the interactions between aerosols 
and clouds are either neglected or treated with simple 
parameterizations in climate model simulations 
evaluated in the AR4.

Given the large uncertainties in forcings and 
model inadequacies in dealing with these forcings, 
how is it that each model does a credible job of track-
ing the twentieth-century global surface temperature 
anomalies (Fig. 9.5 in Hegerl et al. 2007)? Schwartz 
(2004) notes that the intermodel spread in modeled 
temperature trend expressed as a fractional stan-
dard deviation is much less than the corresponding 
spread in either model sensitivity or aerosol forcing, 
and this comparison does not consider differences 
in solar and volcanic forcing. This agreement is ac-
complished through inverse calculations, whereby 
modeling groups can select the forcing dataset and 
model parameters that produce the best agreement 
with observations. While some modeling groups 
may have conducted bona fide forward calculations 
without any a posteriori selection of forcing datasets 
and model parameters to fit the twentieth-century 
time series of global surface temperature anomalies, 
the available documentation on each model’s tun-
ing procedure and rationale for selecting particular 
forcing datasets is not generally available.

The inverse calculations can mask variations in 
sensitivity among the different models. If a model’s 

sensitivity is high, then greater aerosol forcing 
is used to counter the greenhouse warming, and 
vice versa for low model sensitivity (Kiehl 2007). 
Schwartz (2004) argues that uncertainties in aero-
sol forcing must be reduced at least three-fold for 
uncertainty in climate sensitivity to be meaning-
fully reduced and bounded. Further, kludging and 
neglect of ontic uncertainty in the tuning can result 
in a model that is over- or undersensitive to certain 
types or scales of forcing.

With regard to the ability of climate models to 
simulate natural internal variability on decadal time 
scales, “there has been little work evaluating the 
amplitude of Pacific decadal variability in [coupled 
climate models]” (Randall et al. 2007, p. 621). Whereas 
most climate models simulate something that re-
sembles the meridional overturning circulation 
(MOC), the mechanisms “that control the variations 
in the MOC are fairly different across the ensemble 
of [coupled climate models]” (p. 621). Comparison of 
the power spectra of observed and modeled global 
mean temperatures in Fig. 9.4 of Hegerl et al. (2007) 
shows that all models underestimate the amplitude 
of variability on periods of 40–70 yr, which encom-
passes key modes of multidecadal natural internal 
variability, such as the Pacific decadal oscillation and 
the Atlantic multidecadal oscillation.

Bootstrapped plausibility.
If it was so, it might be, and if it were so, it would be; 
but as it isn’t it ain’t. That’s logic!

—Charles Lutwidge Dodgson
(Lewis Carroll)

Bootstrapped plausibility (Agassi 1974) occurs 
with a proposition that is rendered plausible that in 
turn lends plausibility to some of the proposition’s 
more doubtful supporting arguments. As such, 
bootstrapped plausibility occurs in the context of 
circular reasoning, which is fallacious because of a 
flawed logical structure whereby the proposition to 
be proved is implicitly or explicitly assumed in one of 
the premises. This subsection argues that the IPCC’s 
detection and attribution arguments involve circular 
reasoning, and that confidence in the evidence and 
argument is elevated by bootstrapped plausibility.

Consider the following argument that apparently 
underlies the general reasoning behind the AR4’s 
attribution statement:

1)	 Detection. Climate change in the latter half of 
the twentieth century is detected based primarily 
upon increases in global surface temperature 
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anomalies that are far larger than can be explained 
by natural internal variability.

2)	 Confidence in detection. The quality of agreement 
between model simulations with twentieth-
century forcing and observations supports the 
likelihood that models are adequately simulating 
the magnitude of natural internal variability on 
decadal to century time scales. From Hegerl et al. 
2007, p. 693): “However, models would need to 
underestimate variability by factors of over two 
in their standard deviation to nullify detection 
of greenhouse gases in near-surface temperature 
data (Tett et al. 2002), which appears unlikely 
given the quality of agreement between models 
and observations at global and continental scales 
(Figs. 9.7 and 9.8) and agreement with inferences 
on temperature variability from NH temperature 
reconstructions of the last millennium.”

3)	 Attribution. Attribution analyses, including cli-
mate model simulations for the twentieth-century 
climate, that combine natural and anthropogenic 
forcing agree much better with observations than 
simulations that include only natural forcing. 
From Hegerl et al. (2007, p. 684): “The fact that 
climate models are only able to reproduce ob-
served global mean temperature changes over the 
20th century when they include anthropogenic 
forcings, and that they fail to do so when they 
exclude anthropogenic forcings, is evidence for 
the influence of humans on global climate.”

4)	 Confidence in attribution. Detection and attribu-
tion results based on several models or several 
forcing histories suggest that the attribution of a 
human influence on temperature change during 
the latter half of the twentieth century is a robust 
result. From Hegerl et al. (2007, p. 669): “Detection 
and attribution results based on several models or 
several forcing histories do provide information 
on the effects of model and forcing uncertainty. 
Such studies suggest that while model uncertainty 
is important, key results, such as attribution of a 
human influence on temperature change during 
the latter half of the 20th century, are robust.”

The strong agreement between forced climate 
model simulations and observations for the twentieth 
century (premise 3) provides bootstrapped plausibility 
to the models and the external forcing data. However, 
this strong agreement depends heavily on inverse mod-
eling, whereby forcing datasets and/or model param-
eters are selected based upon the agreement between 
models and the time series of twentieth-century obser-
vations. Further confidence in the models is provided 

by premise 4, even though the agreement of different 
models and forcing datasets arises from the selection of 
forcing datasets and model parameters by inverse cal-
culations designed to agree with the twentieth-century 
time series of global surface temperature anomalies. 
This agreement is used to argue that “Detection and 
attribution studies using such simulations suggest 
that results are not very sensitive to moderate forcing 
uncertainties” (Hegerl et al. 2007, p. 678).

Confidence in the climate models that is elevated 
by inverse calculations and bootstrapped plausibility 
is used as a central premise in the argument that cli-
mate change in the latter half of the twentieth century 
is much greater than can be explained by natural 
internal variability (premise 1). Premise 1 underlies 
the IPCC’s assumption (Hegerl et al. 2007, p. 684) that 
“Global mean and hemispheric-scale temperatures on 
multi-decadal time scales are largely controlled by 
external forcings (Stott et al. 2000)” and not natural 
internal variability. In effect, the IPCC’s argument 
has eliminated multidecadal natural internal vari-
ability as a causative factor for twentieth-century 
climate change. Whereas each model demonstrates 
some sort of multidecadal variability (which might 
be of a reasonable amplitude or associated with the 
appropriate mechanisms), the ensemble averaging 
process filters out the simulated natural internal vari-
ability since there is no temporal synchronization in 
the simulated chaotic internal oscillations among the 
different ensemble members.

The IPCC’s detection and attribution method is 
meaningful to the extent that the models agree with 
observations against which they were not tuned and 
to the extent that the models agree with each other 
in terms of attribution mechanisms. The AR4 has 
demonstrated that greenhouse forcing is a plausible 
explanation for warming in the latter half of the 
twentieth century, but it cannot rule out substantial 
warming from other causes, such as solar forcing and 
internal multidecadal ocean oscillations owing to the 
circular reasoning and to the lack of convincing attri-
bution mechanisms for the warming during 1910–40 
and the cooling during the 1940s and 1950s.

Bootstrapped plausibility and circular reason-
ing in detection and attribution arguments can be 
avoided by the following:

•	 Using the same best estimate of forcing compo-
nents from observations or forward modeling for 
multimodel ensembles

•	 Conducting tests of the sensitivity to uncertainties 
associated with the forcing datasets using a single 
model
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•	 Improving understanding of multidecadal natural 
internal variability and the models’ ability to simu-
late its magnitude

•	 Improving detection and attribution schemes to 
account for the models’ inability to simulate the 
timing of phases of natural internal oscillations 
and the meridional overturning circulation

•	 Considering the broad range of confounding 
factors in assessing likelihood and confidence, 
including observational errors, model errors 
and uncertainties, uncertainties in internal vari-
ability, and inadequacies in the fingerprinting 
methodology

The experimental design being undertaken for the 
Coupled Model Intercomparison Project phase 5 simu-
lations (Taylor et al. 2011) to be used in the IPCC AR5 
shows improvements that should eliminate some of the 
circular reasoning that was evident in the AR4 attribu-
tion argument. In the CMIP5 simulations, the use of 
specific best-estimate datasets of forcing for solar and 
aerosols is recommended. The National Center for At-
mospheric Research (NCAR) Community Climate Sys-
tem Model twentieth-century simulations for CMIP5 
(Gent et al. 2011) arguably qualifies as a completely 
forward calculation, with forcing datasets being selected 
a priori and no tuning of parameters in the coupled 
model to the twentieth-century climate other than 
the sea ice albedo and the low cloud relative humidity 
threshold. The results of NCAR’s CMIP5 calculations 
show that after 1970, the simulated surface temperature 
increases faster than the data, so that by 2005 the model 
anomaly is 0.4°C larger than the observed anomaly. 
Understanding this disagreement should provide an 
improved understanding of the model uncertain-
ties and uncertainties in the attribution of the recent 
warming. This disagreement implies that the detection 
and attribution argument put forth in the AR4 that was 
fundamentally based on the good agreement between 
models and observations will not work in the context 
of at least some of the CMIP5 simulations.

Since no traceable account is given in the AR4 of 
how the likelihood assessment in the attribution state-
ment was reached, it is not possible to determine what 
the qualitative judgments of the lead authors were on 
the methodological reliability of their claim. Further, 
the attribution statement itself is at best imprecise and 
at worst ambiguous: what does “most” mean—51% 
or 99%? The high likelihood of the imprecise “most” 
seems rather meaningless (uncertainty monster sim-
plification). From the IAC: “In the Committee’s view, 
assigning probabilities to imprecise statements is not 
an appropriate way to characterize uncertainty.”

Logic of the attribution statement.
Often, the less there is to justify a traditional custom, 
the harder it is to get rid of it.

—Mark Twain

Over the course of the four IPCC assessments, the at-
tribution statement has evolved in the following way:

•	 FAR (IPCC 1990, p. xii): “The size of the warm-
ing over the last century is broadly consistent 
with the prediction by climate models, but is 
also of the same magnitude as natural climate 
variability . . . Thus the observed increase could be 
largely due to this natural variability: alternatively 
this variability and other human factors could 
have offset a still larger human-induced green-
house warming. The unequivocal detection of the 
enhanced greenhouse effect from observations is 
not likely for a decade or more.”

•	 SAR (IPCC 1995, p. 4): “The balance of evidence 
suggests a discernible human influence on global 
climate.”

•	 TAR (IPCC 2001, p. 5): “There is new and stronger 
evidence that most of the warming observed over 
the last 50 years is attributable to human activi-
ties.”

•	 AR4 (IPCC 2007, p.10): “Most of the observed 
increase in global average temperatures since 
the mid-20th century is very likely due to the ob-
served increase in anthropogenic greenhouse gas 
concentrations.”

The attribution statements have evolved from “dis-
cernible” in the SAR to “most” in the TAR and AR4, 
demonstrating an apparent progressive exorcism of 
the uncertainty monster. The attribution statements 
are qualitative and imprecise in the sense of using 
words such as “discernible” and “most.” The AR4 
attribution statement is qualified with a “very likely” 
likelihood. As stated previously by the IAC, assigning 
probabilities to imprecise statements is not an appro-
priate way to characterize uncertainty.

The utility of the IPCC’s attribution statement is 
aptly summarized by this quote from a document dis-
cussing climate change and national security (Rogers 
and Gulledge 2010, p. 19): “For the past 20 years, 
scientists have been content to ask simply whether 
most of the observed warming was caused by human 
activities. But is the percentage closer to 51 percent 
or to 99 percent? This question has not generated a 
great deal of discussion within the scientific com-
munity, perhaps because it is not critical to further 
progress in understanding the climate system. In the 
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policy arena, however, this question is asked often and 
largely goes unanswered.”

The logic of the IPCC AR4 attribution statement 
is discussed by Curry (2011b). Curry argues that the 
attribution argument cannot be well formulated in 
the context of Boolean logic or Bayesian probability. 
Attribution (natural vs anthropogenic) is a shades-
of-gray issue and not a black or white, 0 or 1 issue, 
or even an issue of probability. Toward taming the 
attribution uncertainty monster, Curry argues that 
fuzzy logic provides a better framework for consider-
ing attribution, whereby the relative degrees of truth 
for each attribution mechanism can range in degree 
between 0 and 1, thereby bypassing the problem of 
the excluded middle. There is general agreement 
that the percentages of warming each attributed to 
natural and anthropogenic causes is less than 100% 
and greater than 0%. The challenge is to assign 
likelihood values to the distribution of the different 
combinations of percentage contributions of natural 
and anthropogenic contributions. Such a distribu-
tion may very well show significant likelihood in the 
vicinity of 50/50, making a binary demarcation at the 
imprecise “most” a poor choice.

Taming the uncertainty monster.
I used to be scared of uncertainty; now I get a high 
out of it.

—Jensen Ackles

Symptoms of an enraged uncertainty monster 
include increased levels of confusion, ambiguity, 
discomfort, and doubt. Evidence that the monster is 
currently enraged includes doubt that was expressed 
particularly by European policy makers at the climate 
negotiations in Copenhagen (Van der Sluijs et al. 
2010), defeat of a 7-yr effort in the U.S. Senate to pass 
a climate bill centered on cap and trade, increase in 
prominence of skeptics in the news media, and the 
formation of an InterAcademy Independent Review 
of the IPCC.

The monster is too big to hide, exorcise, or sim-
plify. Increasing concern that scientific dissent is 
underexposed by the IPCC’s consensus approach 
argues for ascendancy of the monster detection and 
adaptation approaches. The challenge is to open 
the scientific debate to a broader range of issues 
and a plurality of viewpoints and for politicians to 
justify policy choices in a context of an inherently 
uncertain knowledge base (e.g., Sarewitz 2004). Some 
ideas for monster taming strategies at the levels of 
institutions, individual scientists, and communities 
are presented.

Taming strategies at the institutional level.
The misuse that is made [in politics] of science distorts, 
politicizes and perverts that same science, and now we 
not only must indignantly cry when science falters, we 
also must search our consciences.

—Diederik Samsom

The politics of expertise describes how expert opin-
ions on science and technology are assimilated into 
the political process (Fischer 1989). A strategy used 
by climate policy proponents to counter the strategies 
of the merchants of doubt (Oreskes and Conway 2010; 
Schneider and Flannery 2009) has been the establish-
ment of a broad international scientific consensus with 
high confidence levels, strong appeals to the author-
ity of the consensus relative to opposing viewpoints, 
and exposure of the motives of skeptics. While this 
strategy might have been arguably useful, needed, or 
effective at some earlier point in the debate to counter 
the politically motivated merchants of doubt, these 
strategies have enraged the uncertainty monster, 
particularly since the Climategate e-mails and errors 
that were found in the IPCC AR4 Working Group II 
(WGII) report (e.g., Van der Sluijs et al. 2010).

Oppenheimer et al. (2007, p.) remark that “the 
establishment of consensus by the IPCC is no longer 
as important to governments as a full exploration of 
uncertainty.” The institutions of climate science, such 
as the IPCC, the professional societies and scientific 
journals, national funding agencies, and national and 
international policy-making bodies, have a key role to 
play in taming the uncertainty monster. Objectives 
of taming the monster at the institutional level are to 
improve the environment for dissent in scientific ar-
guments; to make climate science less political, clarify 
the political values and visions in play; to expand 
political debate; and to encourage experts in the social 
sciences, humanities, and engineering to participate in 
the evaluation of climate science and its institutions. 
Identifying areas where there are important uncer-
tainties should provide a target for research funding.

Taming strategies for the individual scientist.
Science . . . never solves a problem without creating 
ten more.

—George Bernard Shaw

Individual scientists can tame the uncertainty 
monster by clarifying the confusion and ambiguity 
associated with knowledge versus ignorance and 
objectivity versus subjectivity. Morgan et al. (2009) 
argue that doing a good job of characterizing and 
dealing with uncertainty can never be reduced to a 
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simple cookbook, and that one must always think 
critically and continually ask questions. Spiegelhalter 

(2011) provided the following advice at the recent 
workshop on Handling Uncertainty in Science at the 
Royal Society:

•	 We should try and quantify uncertainty where 
possible

•	 All useful uncertainty statements require judg-
ment and are contingent

•	 We need clear language to honestly communicate 
deeper uncertainties with due humility and with-
out fear

•	 For public confidence, trust is more important 
than certainty

Richard Feynman’s (1974, p. 11) address on “cargo 
cult science” clearly articulates the scientist’s respon-
sibility: “Details that could throw doubt on your 
interpretation must be given, if you know them. You 
must do the best you can—if you know anything at all 
wrong, or possibly wrong—to explain it. If you make 
a theory, for example, and advertise it, or put it out, 
then you must also put down all the facts that disagree 
with it, as well as those that agree with it . . . In sum-
mary, the idea is to try to give all of the information 
to help others to judge the value of your contribution; 
not just the information that leads to judgment in one 
particular direction or another.”

Impact of integrity on the monster.
He who fights with monsters might take care lest he 
thereby become a monster.

—Friedrich Nietzsche

Integrity is an issue of particular importance at 
the science–policy interface, particularly when the 
scientific case is represented by a consensus that is 
largely based on expert opinion. Integrity is to the 
uncertainty monster as garlic is to a vampire.

Gleick (2011) distinguishes a number of tactics 
that are threats to the integrity of science: appealing 
to emotions, making personal (ad hominem) attacks, 
deliberately mischaracterizing an inconvenient 
argument, inappropriate generalization, misuse 
of facts and uncertainties, false appeal to author-
ity, hidden value judgments, selectively omitting 
inconvenient measurement results, and packing 
advisory boards.

The issue of integrity is substantially more com-
plicated at the science–policy interface, particularly 
since the subject of climate change has been so highly 
politicized. A scientist’s statement regarding scientific 

uncertainty can inadvertently become a political 
statement that is misused by the merchants of doubt 
for political gain. Navigating this situation is a con-
siderable challenge, as described by Pielke (2007). 
Individual scientists can inadvertently compromise 
their scientific integrity for what they perceive to be 
good motives. Whereas such actions can provide 
temporary political advantages or temporarily bol-
ster the influence of an individual scientist, the only 
remedy in the long run is to let the scientific process 
take its course and deal with uncertainty in an open 
and honest way.

The hopeful monster.
There are very few monsters who warrant the fear we 
have of them.

—Andre Gide

The “hopeful monster” is a colloquial term used 
in evolutionary biology to describe the production of 
new major evolutionary groups. Here we invoke the 
hopeful monster metaphor to address the possibility 
of taming the monster through the evolution of new 
entities, enabled by social computing.

When the stakes are high and uncertainties are 
large, Funtowicz and Ravetz (1993) point out that 
there is a public demand to participate and assess 
quality, which they refer to as the extended peer com-
munity. The extended peer community consists not 
only of those with traditional institutional accredita-
tion that are creating the technical work but also those 
with much broader expertise that are capable of doing 
quality assessment and control on that work.

New information technology and the open knowl-
edge movement are enabling the hopeful monster. 
These new technologies facilitate the rapid diffu-
sion of information and sharing of expertise, giving 
hitherto unrealized power to the peer communities. 
This newfound power has challenged the politics 
of expertise, and the “radical implications of the 
blogosphere” (Ravetz 2010) are just beginning to be 
understood. Climategate illustrated the importance of 
the blogosphere as an empowerment of the extended 
peer community, whereby “criticism and a sense of 
probity were injected into the system by the extended 
peer community from the (mainly) external blogo-
sphere” (Ravetz 2010).

While the uncertainty monster will undoubt-
edly evolve and even grow, it can be tamed through 
understanding and acknowledgement, and we can 
learn to live with it by adapting our policies to explic-
itly include uncertainty. Beck et al.’s (2009, p. 59) state-
ment describes a tamed and happy monster: “Being 
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open about uncertainty should be celebrated: in il-
luminating where our explanations and predictions 
can be trusted and in proceeding, then, in the cycle of 
things, to amending their flaws and blemishes.”
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